Step of Proof: select_nth_tl
11,40
postcript
pdf
Inference at
*
2
2
1
I
of proof for Lemma
select
nth
tl
:
1.
T
: Type
2.
T
List
3.
u
:
T
4.
v
:
T
List
5.
n
:{0...||
v
||},
i
:{0..(||
v
|| -
n
)
}. nth_tl(
n
;
v
)[
i
] =
v
[(
i
+
n
)]
6.
n
: {0...||
v
||+1}
7.
i
: {0..((||
v
||+1) -
n
)
}
8. 0 <
n
v
[(
i
+(
n
- 1))] = [
u
/
v
][(
i
+
n
)]
latex
by ((RWO "select_cons_tl" 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 2:n
C
),(first_nat 3:n)) (first_tok SupInf:t) inil_term)))
latex
C
.
Definitions
,
True
,
T
,
P
&
Q
,
P
Q
,
t
T
,
P
Q
,
P
Q
,
{
i
..
j
}
,
{
i
...
j
}
,
x
:
A
.
B
(
x
)
Lemmas
le
wf
,
squash
wf
,
select
cons
tl
,
length
wf1
,
select
wf
origin